Unit 4 Summary

Prior Learning Grades 3-5 - Fraction operations Grade 6 - Equivalent ratios - Unit rates Grade 7, Unit 2 - Proportional relationships	Grade 7, Unit 4 - Percentages as proportional relationships - Applying percentages	Later in Grade 7 - Operations with negative numbers - Solving equations	Grade 8 \& HS - Exponential functions

Percentages as Proportional Relationships

This unit continues the study of proportional relationships, now incorporating fractional quantities and percentages.

A 4-by- 6 photograph can be scaled and printed to be many different sizes.

In this example, each value in the second column is $\frac{3}{2}$ times the length of the value in the first column.

Height (in.)	Width (in.)
4	6
$1 \frac{1}{2}$	$2 \frac{1}{4}$
5	$7 \frac{1}{2}$

Increasing or decreasing an original amount by a percentage is another example of a proportional relationship. The original amount is always represented by 100% or 1 .

Three runners training for a race agree that they will each run 10% further next week than they ran this week.

Each value in the second column is 10% greater than the value in the first column. The constant of proportionality is 1.10 .

This is an example of a percentage increase.

Miles Ran This Week	Miles to Run Next Week
5	5.5
11	12.1
6.5	7.15

desmos

Unit 7.4, Family Resource

Here is an example of a percentage decrease.
The computer club had 64 students. Then, they lost 16 students.
This is a 25% decrease because $\frac{16}{64}=0.25$.

The club now has 48 students, which is 75% of the starting amount: $0.75 \cdot 64=48$.

Sometimes problems require us to work backwards. The population of Boom Town has increased by 25% since last year. The population is now 6600 . What was the population last year?

We can use a variety of representations to solve the problem:

Applying Percentages to Solve Problems

Percentages are useful in a variety of real-world situations.

A customer buys an item that costs $\$ 20$. The customer has an 18% off coupon, and then pays a sales tax of 7.5%.
82% of the bill remains after the 18% off coupon, and 82% of $\$ 20$ is $20 \cdot 0.82=16.40$.

For the total after tax, you can calculate $16.40 \cdot 1.075=17.63$.
The customer will pay a total of $\$ 17.63$.

Original Cost	$\$ 20.00$
18% Off Coupon $\$$	
Subtotal	$\$$
7.5% Tax	$\$$
Total	$\$? . ? ?$

We can also use percent change to analyze statistics about the larger society in which we live.

desmos

Unit 7.4, Family Resource

Try This at Home
 Percentages as Proportional Relationships

A supermarket offers some food by the pound. A customer orders $1 \frac{1}{2}$ pounds of potato salad for $\$ 9$ and $1 \frac{3}{4}$ pounds of coleslaw for $\$ 11.20$.
1.1 How much would 5 pounds of potato salad cost?
1.2 Which food is more expensive per pound?
2. A car dealership pays $\$ 8350$ for a car. They sell it for 17% more than they paid. How much does the dealership sell the car for?
3. On Tuesday, the high temperature was 54° Fahrenheit. This was 10% lower than the high temperature on Monday. What was the high temperature on Monday?

Applying Percentages to Solve Problems

4. A restaurant bill before tip was $\$ 18.75$. If you paid $\$ 22$, what percent tip did you leave for the server?

The price tag on a backpack is $\$ 34.20$.
5.1 The store has a 15% off sale. What is the new price of the backpack?
5.2 The sales tax in this city is 5%. How much would a customer pay after the sale and the tax?

desmos

Unit 7.4, Family Resource

Solutions:

1.1 $\$ 30$. One approach is to divide the cost by the weight to find the cost per pound.
$9 \div 1 \frac{1}{2}=6$ dollars per pound. 5 pounds at that rate is $\$ 30$.
1.2 Coleslaw is more expensive. One approach is to divide each cost by each weight.

Potato salad: $9 \div 1 \frac{1}{2}=6$ dollars per pound
Coleslaw: $11.20 \div 1 \frac{3}{4}=6.40$ per pound
2. $\$ 9769.50$. One approach is to multiply $8350 \cdot 1.17=9769.5$.
3. 60°. One approach is to write and solve an equation, where 90% of some number is 54° :
$0.9 x=54 \rightarrow x=\frac{54}{0.9}=60$.
4. About 17.3%. One approach is write and solve an equation, where 18.75 multiplied by an unknown number is $22.18 .75 x=22 \rightarrow x=\frac{22}{18.75} 1.17333 \ldots$. The 1 that comes before the decimal represents the original 100%, while the rest of the decimal number is the growth. When written as a rounded percent, .17333 is 17.3%.
5.1 $\$ 29.07$. One approach is to calculate $34.20 \cdot 0.85$, which is 29.07 .
5.2 $\$ 30.52$. One approach is to multiply the answer from the previous problem, 29.07 , by 1.05 .

